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Abstract

Using the inverse transformation technique, we have generated a novel two-parameter inverse
exponential power distribution in this paper. The skewness measure and kurtosis, cumulative
distribution function, quantile function, reliability function, probability density function, and haz-
ard rate function are only a few of the mathematical and statistical properties of the suggested
distribution are discussed. LSE, CVME, and MLE methods are applied to evaluate the parame-
ters of the new model and create asymptotic confidence intervals. The variance-covariance matrix
for MLEs is obtained analytically by deriving the Fisher information matrix. Using R software,
all calculations are completed. Utilizing basic graphical techniques and statistical tests on a real
dataset, the potentiality of the proposed distribution is demonstrated. Comparing the suggested
distribution to various alternative lifetime distributions, we have empirically demonstrated that it
is offered a better fit and is more flexible.
Keywords: Exponential power distribution, Kolmogorov- Smirnov test, Maximum likelihood es-
timation, Reliability.

1 Introduction

Lifetime distributions are frequently used in reliability and survival analysis to measure the average
lifespan of components of a system and a device. In disciplines like insurance, biology, life science,
engineering, medicine, etc., lifespan distributions are often employed. A wide variety of continuous
probability distributions, including exponential, gamma, and Weibull, have frequently been employed
to assess lifetime data in the statistical literature. Since a few years ago, most researchers have been
drawn to the exponential distribution because of its flexibility for modeling lifespan data. It has been
reported that this model performs admirably in a variety of applications since there are numerous
closed-form solutions to survival analyses. Under the assumption of a constant failure rate, it is simple
to defend, but in reality, failure rates are not always constant. As a result, the haphazard use of the
exponential lifetime model seems incorrect and unrealistic. The beta exponential distribution, which
is derived from the logit of a beta random variable, was presented by (Nadarajah & Kotz, 2006). The
generalized exponential (GE) distribution was created by (Gupta & Kundu, 1999). It is possible to
manage data with both decreasing and increasing failure rate functions using this extended family of
distributions. Modifications to the existing classical probability models have led to the establishment
of new classes of models in recent years (Marshall & Olkin, 2007). Recently, there have been various
attempts to create novel distributions that both extend well-known distributions and offer a lot of
modeling flexibility. By adding additional parameters, a number of processes could be applied to
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create a larger family from an existing model. As a result, the statistical literature has provided a
variety of classes by including one or more parameters to form novel models (Rinne, 2009; Pham &
Lai, 2007). Suppose a random variable be Y , then the cumulative distribution function (CDF) of
exponential distribution with parameter λ is defined by

FY (y;λ) = 1− e−λy ; y > 0, λ > 0.

In statistical literature, there are numerous generalizations of the exponential distribution that can be
used to create lifetime models with more flexibility. Some of the well-known generalizations include the
following: (Chaudhary & Kumar, 2020b) recommended the logistic-modified exponential distribution.
By modifying the exponential distribution, (Smith & Bain, 1975) established the exponential power
model. The generalized exponential model was created by (Gupta & Kundu, 1999). It has a hazard
function with an increasing and decreasing failure rate and is more adaptable than the exponential
model. The generalized exponential distribution’s PDF is

fGE (x; α, λ) = α λ e−λ x
{
1− e−λ x

}α−1
; (α, λ) > 0, x > 0.

(Lan & Leemis, 2008) suggested the logistic-exponential distribution. For different values of the pa-
rameters, it has failure rates that are increasing, or decreasing, bathtub (BT)-shaped, and upside-down
bathtub (UBT)-shaped. (Nadarajah & Haghighi, 2011) introduced a further addition to the exponen-
tial distribution and referred to it as a generalization of the exponential distribution. The hazard rate
displays increasing and decreasing shapes, while its density can have decreasing and unimodal shapes.
The exponential distribution has been further expanded by the creation of new extended exponential
(EEN) distributions with monotonically rising and constant hazard rate forms (Joshi, 2015). If X be
the continuous random variable, then the CDF of EEN distribution is given by

F (x) = 1− exp(−αxe−λ/x) ;x > 0, (α, λ) > 0

The half-logistic exponential extension distribution was developed by (Chaudhary & Kumar, 2020a)
using the exponential extension distribution as a basis distribution. By adopting exponential exten-
sion as the baseline model, (Joshi & Kumar, 2020b) recommended the novel exponential extension
Poisson model. The truncated Cauchy power exponential distribution, an extension of the exponential
distribution, was developed by (Chaudhary, Sapkota, & Kumar, 2020a). (Joshi & Kumar, 2020a)
introduced the Lindley exponential power distribution, also (Joshi, Sapkota, & Kumar, 2020) sug-
gested the logistic-exponential power distribution by utilizing the exponential power distribution as
the parent model. (Chaudhary, Sapkota, & Kumar, 2020b) created the truncated Cauchy power in-
verse exponential distribution. As a parent distribution, (Chaudhary & Kumar, 2021) created the
Arctan exponential extension distribution using the exponential extension model. (Chaudhary & Ku-
mar, 2022) have also created half Cauchy modified exponential distribution using half Cauchy family
of distribution as a baseline distribution.

In this paper, we propose a novel distribution based on the exponential power distribution that
was previously proposed by (Srivastava & Kumar, 2011). This distribution is employed to analyze
the software reliability data having the shape of bathtub-shaped, increasing, decreasing, and j-shaped
failure rate functions for different values of the parameters. Following are the CDF and PDF for the
exponential power distribution:

G(x) = 1− exp
[
1− eβx

α
]
; α, β > 0, x > 0, (1)

and
g(x) = αβxα−1eβx

α

exp
[
1− eβx

α
]
; α, β > 0, x > 0. (2)

The many sections of this study are organized as follows: The new distribution known as the inverse
exponential power (IEP) is presented in section 2 along with its mathematical and statistical properties.
In Section 3, we go into great detail about the least-squares (LSE), Cramer-Von-Mises (CVME),
and maximum likelihood (MLE) estimation techniques. Using a real dataset, we provide the model
parameter estimated values in Section 4, together with their fisher information matrix and asymptotic
confidence intervals. Furthermore, we have included examples of the various test criteria used to
evaluate the suggested model’s goodness of fit. Section 5 offers a few concluding remarks.
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2 The Inverse Exponential Power (IEP) Distribution

In this section, we have introduced a novel model using the inverse transformation technique by
inverting Equations (1) and (2) respectively. If X is a non-negative random variable that follows the
IEP distribution, then the following are its CDF and PDF functions:

2.1 CDF of IEP distribution

The distribution function of inverse exponential power distribution

F (x; α, λ) = exp

{
1− exp

(
λ

x

)α}
; α > 0, λ > 0, x > 0, (3)

where λ > 0 and α > 0 are the scale and shape parameters respectively.

2.2 PDF of IEP distribution

The PDF of the IEP distribution is

f(x; α, λ) =
α

λ

(
λ

x

)α+1

exp

(
λ

x

)α

exp

{
1− exp

(
λ

x

)α}
α > 0, λ > 0, x > 0. (4)

2.3 Survival function

The survival function of IEP distribution is

R(x; α, λ) = 1− exp

{
1− exp

(
λ

x

)α}
; α > 0, λ > 0, x > 0. (5)

2.4 Hazard function

h(x; α, λ) =
α/λ (λ/x)

α+1
exp (λ/x)

α
exp {1− exp (λ/x)

α}
1− exp {1− exp (λ/x)

α}
; α > 0, λ > 0, x > 0. (6)

Similarly, the cumulative hazard function can be calculated as

H (x) = − log

(
1− exp

{
1− exp

(
λ

x

)α})
; α > 0, λ > 0, x > 0.

2.5 Quantile function

The quantile function of IEP is given by

xp = λ (log {1− log(p)})−(1/α)
; 0 < p < 1. (7)

Random deviate generation is given by

x = λ [log {1− log(u)}]−(1/α)
; 0 < u < 1.

where u has the uniform U(0, 1) distribution.

2.6 Median of IEP distribution

Simply substituting p = 0.5 in Equation (7) yields the median of X from the IEP distribution as

Median = λ (0.1142)
−(1/α)

.
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2.7 Skewness and Kurtosis

(Kennedy & Keeping, 1962) developed the quartile-based Bowley’s measure of skewness as follows:

Sk (B) =
Q (1/4) +Q (3/4)− 2Q (1/2)

Q (3/4)−Q (1/4)
,

and the coefficient of kurtosis calculated by (Moors, 1988) using octiles is as follows:

Ku (M) =
Q (0.875) +Q (0.375)−Q (0.125)−Q (0.625)

Q (3/4)−Q (1/4)
.

Figure 1 displays the PDF and hazard function graphs for the IEP distribution for various parameter
values. The density function of the IEP distribution can take on several shapes, as seen in Figure 1
(left panel), depending on the numerous parameter values. The hazard rate is depicted in Figure 1
(right panel) as an increasing, inverted bathtub, and decreasing shape.
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Figure 1: Hazard function (right panel) and PDF (left panel) graphs for numerous parameter values.

3 Parameter Estimation

3.1 Method of Maximum Likelihood Estimation (MLE)

Let X1, ..., Xn represent a random sample of size n independently generated, uniformly distributed
taken from the IEP model with parameters α and λ but unknown. Using the PDF in Equation (4),
the likelihood function of the IEP is as follows:

ℓ (α, λ|x) = n logα + nα log λ− (α+ 1)
n∑

i=1

log xi + λα
n∑

i=1

x−α
i + n−

n∑
i=1

exp {(λ/ xi)
α} (8)

By differentiating Equation (8) and equating to zero, we get the solutions for the following nonlinear
equations to estimate the unknown parameters of the IEP (α, λ) .

∂ℓ

∂α
=

n

α
+ n log λ−

n∑
i=1

log xi +
n∑

i=1

(λ/ xi)
α

log(λ/xi) {1− exp (λ/xi)
α} = 0 (9)

∂ℓ

∂λ
=

n α

λ
+

n∑
i=1

α λα−1 xα
i {1− exp (λ /xi)

α} = 0 (10)
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It is difficult to solve the Equations (9) and (10) for α and λ. Therefore, one can solve these equations
using the Newton-Raphson iteration method or any other suitable computer tools like R, Mathematica,
Matlab, or others. Let’s symbolize the parameter vector by τ = (α, λ) and the associated MLE for τ

as τ̂ = (α̂, λ̂), then the asymptotic normality results in,

(τ̂ − τ̂) → N2


0, (I (τ))

−1

.

Here, I (τ) stands for Fisher’s information matrix which is expressed by,

I (τ) = −


 E


∂2l
∂α2


E


∂2l
∂α∂λ



E


∂2l
∂λ∂α


E


∂2l
∂λ2





Further differentiating Equations (9) and (10) we get,

∂2l

∂α2
= − n

α2
+

n
i=1

(λ/xi)
α
[ln (λ/xi)]

2

1− (λ/xi)

αe(λ/xi)
α

+ e(λ/xi)
α


∂2l

∂λ2
= −nα

λ2
+ α (α− 1)

n
i=1

1

x2
i

(λ/xi)
α−2


1− e(λ/xi)

α

−

n
i=1

(λ/xi) (λ/xi)
2α−1

e(λ/xi)
α

ln (λ/xi)

∂2l

∂α∂λ
=

n

λ
−

n
i=1

(λ/xi)
α

[{(λ/xi) ln (λ/xi) + ln (λ/xi)}α+ 1] e(λ/xi)

α

− ln (λ/xi)
α−1



∂2l

∂λ∂α
=

n

λ
−

n
i=1

(λ/xi)
α

[{(λ/xi) ln (λ/xi) + ln (λ/xi)}α+ 1] e(λ/xi)

α

− ln (λ/xi)
α−1



Since we don’t know τ , it is of no value in practice that the MLE has asymptotic variance (I (τ))
−1

.
So, using the estimated parameter values, the asymptotic variance can be approximated. Typically,
the observed Fisher information matrix Ψ(τ̂) is used to estimate the information matrix I (τ) provided
by

Ψ(τ̂) = −


∂2l
∂α2

∂2l
∂α∂λ

∂2l
∂α∂λ

∂2l
∂λ2



|(α̂,λ̂)

= −H (τ)|(τ=τ̂)

where H stands for the Hessian matrix. The observed information matrix is generated by the Newton-
Raphson method with the goal of maximizing the likelihood and the Variance-Covariance Matrix can
thus be represented through,


−H (τ)|(τ=τ̂)

−1

=


var(α̂) cov(α̂, λ̂)

cov(α̂, λ̂) var(λ̂)


.

Let Zδ/2 stand for the upper percentile of standard normal variate. In light of the MLEs’ asymptotic
normality, it is possible to construct the approximate 100(1− δ)% confidence intervals for α and λ as
follows:

λ̂± Zδ/2


var(λ̂)

and
α̂± Zδ/2


var(α̂)

3.2 Method of Least-Square Estimation (LSE)

The weighted least square and the ordinary least square estimators are two further estimation methods
recommended by (Swain, Venkatraman, & Wilson, 1988) which are applied to evaluate the Beta
distributions’ parameters. In this case, we estimate the IEP distribution’s parameters using the same
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method. By minimizing (8) with respect to α and λ, it is possible to determine the LSEs of the
unknown parameters α and λ of the IEP model.

M (X;α, β, λ) =
n∑

i=1

[
F (X(i))−

i

n+ 1

]2
.

If X = (X1, . . . , Xn) is a random sample of size n drawn from a distribution function F (.), then F (Xi)
indicates the distribution function for the ordered random variables X(1) < . . . < X(n). By minimizing

(11) with respect to α and λ, one can get the LSEs of α and λ say α̂ and λ̂ respectively.

M (X;α, λ) =

n∑
i=1

[
exp

{
1− exp

(
λ/x(i)

)α} − i

n+ 1

]2
. (11)

Differentiating Equation (11) with respect to α and λ we get,

∂M

∂α
= −2λ

n∑
i=1

[
exp

{
1− exp

(
λ/x(i)

)α} − i

n+ 1

] [
1

xi
exp

(
λ/x(i)

)α
exp

{
1− exp

(
λ/x(i)

)α}]

∂M

∂λ
= −2α

n∑
i=1

[
exp

{
1− exp

(
λ/x(i)

)α} − i

n+ 1

] [
1

xi
exp

(
λ/x(i)

)α
exp

{
1− exp

(
λ/x(i)

)α}]

By setting the above two equations to zero and solving them we will get LSEs.

3.3 Cramer-Von-Mises estimation (CVME) Method

By minimizing the function (12) with respect to the unknown parameters α and λ, the CVMEs of α
and λ are produced.

D (X;α, λ) =
1

12n
+

n∑
i=1

[
F
(
x(i)|α, λ

)
− 2i− 1

2n

]2

=
1

12n
+

n∑
i=1

[
exp

{
1− exp

(
λ/x(i)

)α}− 2i− 1

2n

]2
.

(12)

Differentiating equation (12) with respect to α and λ we get,

∂D

∂α
= −2λ

n∑
i=1

[
exp

{
1− exp

(
λ/x(i)

)α} − 2i− 1

2n

] [
1

xi
exp

(
λ/x(i)

)α
exp

{
1− exp

(
λ/x(i)

)α}]

∂D

∂λ
= −2α

n∑
i=1

[
exp

{
1− exp

(
λ/x(i)

)α} − 2i− 1

2n

] [
1/x(i) exp

(
λ/x(i)

)α
exp

{
1− exp

(
λ/x(i)

)α}]

The CVM estimators can be obtained by concurrently solving

∂D

∂α
= 0 and

∂D

∂λ
= 0.

4 Application with a real dataset

A real data set of the relief time of 20 patients taking an analgesic is taken for the application of the
suggested model and this data set was reported by (Gross & Clark, 1975). Data are as follows:

1.4, 1.1, 1.7, 1.3, 1.8, 1.9, 2.2, 1.6, 2.7, 1.7, 1.8, 4.1, 1.2, 1.5, 3, 1.4, 2.3, 1.7, 2.0, 1.6
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Figure 2: Plots of profile for the parameters α and λ of IEP distribution.

Table 1: 95% confidence interval, MLE, and SE
Parameter MLE SE 95% ACI
alpha 2.82863 0.51181 (1.8255 3.8318)
lambda 1.33455 0.06552 (1.2061 1.4629)

Figure 2 shows the profile log-likelihood function plots for the parameters α and λ and it can be seen
that the ML estimates can be derived individually. Also, we have presented the contour plot for α and
λ in Figure 4 (right panel). By using R software’s optim() function(R Core Team, 2022; Lambert,
2018) and maximizing the likelihood function (8), the maximum likelihood estimates are computed
directly. Table 1 displays the 95% asymptotic confidence intervals, the MLEs for α and λ, together
with associated standard errors (SE). Hence the Hessian variance-covariance matrix is obtained as,

[
−H (τ)|(τ=τ̂)

]−1

=

[
0.26195 −0.00869
−0.00869 0.00429

]

Table 1 displays the estimated values of the IEP distribution’s parameters for the under-study
data using the CVE, LSE, and MLE methods, as well as the associated AIC, KS, and negative log-
likelihood criteria. The Q-Q plot, the fitted distributions’ density function, and the histogram for the

Table 2: Log-likelihood, AIC, BIC, KS, and estimated parameters
Estimation Method alpha lambda LL AIC BIC KS(p-value)
MLE 2.8286 1.3346 -15.958 35.9165 37.9079 0.1406(0.8243)
LSE 2.9662 1.3745 -16.292 36.5832 38.5747 0.1101(0.9685)
CVME 3.2314 1.398 -17.427 38.8543 40.8458 0.1030(0.9838)

CVM, LSE, and MLE estimate methods are shown in Figure 3. Figure 4 shows the Q-Q plot of the
IEP distribution. The distribution has been observed to fit the data exactly.

We have fitted the IEP distribution and some selected distributions for the comparison, which are
Generalized Gompertz (GGZ) distribution (El-Gohary, Alshamrani, & Al-Otaibi, 2013), Generalized
Exponential Extension (GEE) distribution (Lemonte, 2013), Generalized Exponential (GE) distribu-
tion (Gupta & Kundu, 1999) and Generalized Rayleigh distribution (Kundu & Raqab, 2005).

In Table 3, the value of the AIC, BIC, CAIC, and HQIC as well as the negative log-likelihood
value are displayed. We get to the conclusion that compared to other models, the suggested model
offers a superior fit to the real data set. By displaying the fitted density functions and the histogram,
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Figure 3: The density function and the Histogram of fitted distributions for MLE, LSE and CVM (left
panel) and sample quantiles and fitted quantiles (right panel) of IEP distribution.
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Figure 4: Contour plot (right panel) and the Q-Q plot (left panel) for IEP distribution.

Table 3: Log-likelihood, AIC, BIC, CAIC and HQIC statistics
Distribution LL AIC BIC CAIC HQIC
IEP -15.958 35.9165 37.9079 36.5481 36.3052
GEE -16.11 38.2206 41.2078 39.7206 38.8037
GE -16.261 36.5212 38.5127 37.2271 36.91
GGZ -16.39 38.7805 41.7677 40.2805 39.3636
GR -18.402 40.8045 42.796 41.5104 41.1933
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Figure 5 contrasts the empirical distribution function that produces the same or better results with
the distribution function for the various models. The provided data sets thus show that, compared
to other alternatives, the proposed distribution provides a better fit and more trustworthy findings.
The test statistics values for the various models are shown in Table 4 together with the relevant p-
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Figure 5: Empirical CDF with estimated CDF (right panel) and the PDF and the Histogram of fitted
distributions (left panel).

values for the Kolmogorov-Simnorov (KS), Anderson-Darling (AD), and Cramer-Von Mises (CVM)
statistics. The result confirms that the suggested model has the smallest test statistic value and a
larger p-value, leading us to believe that the inverse exponential power distribution is preferable in
terms of goodness-of-fit.

Table 4: The p-value and related statistics for goodness of fit
Distribution KS(p-value) AD(p-value) CVM(p-value)
IEP 0.1406(0.8243) 0.0519(0.8699) 0.2914(0.9439)
GEE 0.1363(0.8516) 0.0501(0.8812) 0.2903(0.9447)
GE 0.1343(0.8633) 0.0477(0.8954) 0.3105(0.9293)
GGZ 0.1305(0.8852) 0.0492(0.8866) 0.3111(0.9288)
GR 0.1900(0.4655) 0.1272(0.4707) 0.7343(0.5290)

5 Conclusion

The Inverse Exponential Power (IEP) distribution using the inverse transformation technique is a
new extension of the exponential power model that we have introduced in this study. We’ve discussed
about a few of the IEP model’s statistical and mathematical properties. The suggested model is flexible
and has growing, decreasing, and upside-down bathtub hazard functions, according to the graphical
analysis of PDF and HRF. CVME, LSE, and MLE methods are used to evaluate the parameters of
the new distribution and create asymptotic confidence intervals. We have also used real data set to
demonstrate the use of the IEP distribution, and we have discovered that it performs better in terms
of fitting than a few chosen models. For practitioners in theory and applied statistics, it can be an
alternative model.
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